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Abstract: Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), play a piv-
otal role in biomedical applications ranging from magnetic resonance imaging (MRI) enhancement 
and cancer hyperthermia treatments to biosensing. This study focuses on the synthesis, characteri-
zation, and application of IONPs with two different size distributions for frequency mixing mag-
netic detection (FMMD), a technique that leverages the nonlinear magnetization properties of MNPs 
for sensitive biosensing. IONPs are synthesized through thermal decomposition and subsequent 
growth steps. Our findings highlight the critical influence of IONP size on the FMMD signal, 
demonstrating that larger particles contribute dominantly to the FMMD signal. This research ad-
vances our understanding of IONP behavior, underscoring the importance of size in their applica-
tion in advanced diagnostic tools. 
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copy; magnetic biosensing; thermal decomposition; iron oxide nanoparticles; MNP characterization 
 

1. Introduction 
In the evolving landscape of biomedical research, magnetic nanoparticles (MNPs) 

have emerged as a cornerstone for their significant contributions across various domains 
[1,2]. These include enhanced contrast in magnetic resonance imaging (MRI) [3,4], tracers 
in magnetic particle imaging (MPI) [5–7], hyperthermia treatment for cancer [8–11], and 
biosensing [12–14]. In MRI, they improve the contrast between different tissue types, en-
abling an enhanced visualization of anatomical structures and pathological conditions 
[15,16]. In magnetic hyperthermia, these nanoparticles can be heated by an external mag-
netic field to ablate cancerous cells, offering a minimally invasive treatment option that 
can be focused on the tumor site, thus sparing surrounding healthy tissues [17]. 

The most famous and, due to their good bioavailability and low toxicity, the most 
utilized class of MNPs are iron oxide nanoparticles (IONPs). As illustrated in Figure 1, 
they contain a crystalline core that is the main contributor to the magnetic properties of 
the particle, an amorphous surface layer that is less magnetically active, a ligand coating, 
and, in liquid solution, a hydration shell [18,19]. This model serves as a fundamental un-
derstanding of the IONP structure, emphasizing the importance of each component in 
influencing the overall magnetic behavior. Further surface functionalization through the 
conjugation of specific biomolecules on the surface of the particles consequently enables 
their use in biomedical research fields. 
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Figure 1. Schematic drawing of a single magnetic nanoparticle, showing the crystalline core, which 
is surrounded by an amorphous shell, the ligand coating, and the hydration shell. From the ligands 
here, oleic acid, as an example of a hydrophobic ligand, and dopamine, as a hydrophilic coating, is 
shown. Not drawn to scale. 

In magnetic biosensing, IONPs have shown profound potential for the detection and 
quantification of biomolecules, thus providing a powerful tool for the early diagnosis and 
monitoring of diseases [20–24]. Depending on the applied method, the IONPs have to ful-
fill specific requirements regarding their size to achieve an optimal output signal. For con-
trast enhancement of the transverse relaxation (T2) signal in MRI, the contrast increases 
with the increasing IONP size [25]. Moreover, in magnetic particle spectroscopy (MPS), 
the size of the analyzed IONPs contributes significantly to the obtained signal [26,27]. This 
emphasizes the imperative for stringent quality control throughout the synthesis and 
characterization processes of MNPs, ensuring their efficacy for intended applications. 

A notable advancement in biosensing technology is the application of frequency mix-
ing magnetic detection (FMMD), which has shown promising capabilities in point-of-care 
monitoring [28–30]. FMMD offers unique advantages, for example, permitting the concur-
rent identification of various analytes such as deoxyribonucleic acid (DNA) [31], toxins, 
and viruses [32,33]. The technology provides the ability for the simultaneous measure-
ment of two or more analytes, the so-called multiplex detection [34–37], and even permits 
an evaluation of the core size distribution of the magnetic nanoparticles [26,38]. These 
features make FMMD an invaluable tool in refining biosensing methodologies, especially 
in environments where quick and accurate diagnostics are crucial. 

FMMD is a technique that exploits the nonlinear magnetization properties of MNPs 
under the influence of dual-frequency magnetic excitation. This method involves the ap-
plication of two alternating magnetic fields at different frequencies, typically a low-fre-
quency driving field and a high-frequency probing field. When these fields are applied to 
a sample containing MNPs, the particles’ nonlinear magnetic response generates mixing 
harmonics at the sum and difference of the original frequencies [29]. The detection and 
analysis of these harmonics provide a sensitive measure of the MNPs’ characteristics with 
respect to the variation in parameters, such as the core size distribution, hydrodynamic 
size, and immobilization state. The FMMD technique is particularly advantageous for the 
selective quantification and characterization of MNPs due to its ability to discern the 
unique magnetic signatures of different particle types, provided that they exhibit different 
core sizes [34]. The presence of a static offset magnetic field further improves the detection 
capabilities, allowing for the identification of even and odd harmonics and improving the 
diagnostic capabilities of the technique [39]. The precision and versatility of this method 
make it a valuable tool in the field of biosensing, where a detailed understanding of na-
noparticle behavior is crucial for the development of advanced diagnostic tests. 
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For biosensing applications, a suitable response signal is needed that can contribute 
to both the detection sensitivity and also the dynamic detection range. Different contrib-
uting aspects to the FMMD signal have been evaluated in [40] from a dynamic simulation 
approach. The results show that the core size strongly affects the FMMD signal. Moreover, 
the simulation of the core size dependency of the signals suggests that when assuming a 
very narrow distribution width σ of 0.05, the particles below d0 = 16 nm generate almost no 
signal, and it is recommended that larger particles are used. MNPs suitable for nonlinear 
magnetic detection have to exhibit specific properties, like high crystallinity, high mono-
dispersity, and overall superparamagnetism. For applications in biomedicine, the particles 
should also be non-toxic. For medical applications, non-toxic IONPs, consisting of mag-
netite (Fe3O4) or maghemite (Fe2O3) are suitable. These materials can be synthesized by 
different methods, each offering a specific benefit for the characteristics of the obtained 
particles. The easiest method is the so-called coprecipitation method, first reported by Mas-
sart in 1981 [41]. Here, a solution of ferric and ferrous salts is mixed with a basic solution, 
leading to the precipitation of iron hydroxides, which, in the course of the reaction age, 
form magnetite nanoparticles. Although this method is fast and cheap, the obtained parti-
cles are polydisperse, show low crystallinity, and tend to form aggregates, which makes 
them not well suited for applications in FMMD. Another method for the synthesis of mag-
netite MNP is the thermal decomposition of iron-containing precursor salts at high tem-
peratures of around 300 °C in organic solvent [42]. This method yields highly monodis-
perse IONPs coated with oleic acid, which renders the particles soluble only in organic 
solvents, e.g., hexane or toluene. IONPs obtained by thermal decomposition are highly 
crystalline, but 4 nm to 8 nm are also rather small. For applications where larger IONPs 
are required, a subsequent seed-mediated growth step can be performed to obtain IONPs 
with an increased size. The initially obtained small particles are employed in a second re-
action step where the formed iron oxide material attaches preferentially to the seed parti-
cles, leading to larger-sized IONPs. 

Here, we report on the application of differently sized magnetite IONPs synthesized 
by thermal decomposition for magnetic detection by FMMD. We analyzed their nonlinear 
magnetic response and compared their performance. By employing standard characteri-
zation methodologies, we showed experimentally how the particle size variation influ-
ences the FMMD signal and how precise the core size evaluation based on the FMMD 
technique is compared to other methods, i.e., dynamic light scattering (DLS) and transmis-
sion electron microscopy (TEM). This study allows us to experimentally evaluate the im-
pact of the size distribution of the MNPs on the FMMD signal, specifically for the smaller 
size ranges. Our investigation not only enhances our comprehension of magnetic nanopar-
ticle behavior but also propels forward the development of more sophisticated diagnostic 
tools for point-of-care applications. 

2. Materials and Methods 
2.1. Synthesis of Magnetic Nanoparticles 

Benzylether (98%), 1,2-hexadecanediol (90%), and oleylamine were purchased from 
Sigma Aldrich; Fe(acac)3 (97%) was purchased from Merck KGaA; oleic acid (90%), hex-
ane, ethanol, and toluene were received from Carl Roth GmbH + Co. KG; Karlsruhe, Ger-
many. All chemicals were used without further purification. The thermal decomposition 
reactions were performed under a nitrogen atmosphere, and further purification of the 
IONPs was performed under ambient air. 

2.1.1. Synthesis of the Seed IONPs 
The seed IONPs were synthesized by the thermal decomposition method and subse-

quent growth of the seed particles [43]. Briefly, a mixture of 2 mmol Fe(acac)3, 10 mmol 
1,2-hexadecanediol, 6 mmol oleic acid, and 6 mmol oleylamine was dissolved in 20 mL of 
benzylether and heated under magnetic stirring to 200 °C with a heating rate of 4 °C/min 
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in a three-neck round-bottom flask. The reaction mixture was kept at 200 °C for 2 h; during 
this time, the color of the mixture changed from dark red to deep brown. Then, the mix-
ture was heated to reflux (298 °C) for one hour. After this time, the mixture was allowed 
to cool down to room temperature, and the formed IONPs were precipitated by the addi-
tion of 40 mL of ethanol. The precipitates were collected with a magnet, and the superna-
tant was discarded. The residues were washed two times with ethanol and then dissolved 
in hexane. 

2.1.2. Growth of the Seed IONPs 
In total, 20 mg of the seed IONPs, 2 mmol of Fe(acac)3, 10 mmol of 1,2-hexadecane-

diol, 6 mmol of oleic acid, and 6 mmol of oleylamine, were dissolved in 20 mL of ben-
zylether and heated to 200 °C for 2 h. Then, the mixture was heated to reflux (298 °C) and 
kept at this temperature for one hour. After cooling to room temperature, the IONPs were 
isolated by precipitation via the addition of 40 mL ethanol, which was washed several 
times with ethanol and redispersed in hexane. 

2.1.3. Fractionated Precipitation of IONPs 
To receive monodisperse size fractions, the crude IONPs were submitted to fraction-

ated precipitation. For this purpose, a small amount of ethanol was added (100 µL to 1 mL 
of solution) to the hexane solution of the IONPs. Ethanol represents a non-solvent and 
precipitates the largest fraction of the IONPs, while the smaller IONPs stay in the solution. 
The precipitated IONPs are sedimented by centrifugation (10,000× g/15 min). The super-
natant is removed, and another precipitation step is performed by adding ethanol to the 
supernatant. After the addition of 300 µL of ethanol, all particles were precipitated, and 
the individual fractions were dissolved in hexane and characterized. Size fractionated 
samples with a uniform size and narrow size distribution (PDI < 0.1) were used for the 
subsequent growth steps. 

2.2. Characterization of the Synthesized IONP 
The size-fractionated IONPs were dissolved in hexane, and the obtained solution was 

used for DLS measurements. TEM samples were prepared by the deposition of 10 µL of 
this solution on a carbon-coated copper grid. The size and shape of the IONPs were char-
acterized by transmission electron microscopy (TEM) using a Libra 200 Field Emission 
TEM (FE-TEM, Carl Zeiss AG, Oberkochen, Germany) operated at 200 keV. The hydrody-
namic radius and the polydispersity index were characterized using LitesizerTM 500 and 
Kalliope Anton Paar software from Anton Paar, Germany. The iron content was measured 
by employing inductively coupled plasma optical emission spectroscopy (ICP-OES), 
iCAP7600 (Thermo Scientific™, Langerwehe, Germany). 

2.3. Frequency Mixing Magnetic Detection 
An electromagnetic offset module (EMOM) FMMD was used to measure the nonlin-

ear magnetic moment of the synthesized particles at mixing frequencies. The details of the 
setup are mentioned in [35]. The settings of the excitation fields are summarized in Table 
1. 

Table 1. Settings of the frequency mixing magnetic detection setup. 

 Frequency fi [Hz] Magnetic Field Amplitude Bi [mT] 
Low-frequency field (B2) 60 16 
High-frequency field (B1) 40,500 1.2 

Static offset field (B0) - 0, 1, … 24 (25 steps) 

Core size determination through the FMMD method was performed according to 
[38]. In this strategy, offset-dependent FMMD signals were utilized. Under the common 
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assumption of a lognormal distribution, the measured signals were fitted by a nonlinear 
least square Levenberg–Marquardt described as follows: 𝑓௅(𝑑௖, 𝑑଴, 𝜎) =  1√2𝜋 · 𝑑௖ · 𝜎 · exp(− 𝑙𝑛ଶ(𝑑௖/𝑑଴)2𝜎ଶ ) (1)

For every median of the distribution (d0), the best-fitting combination of the width of 
the distribution (σ) and the number of particles (Np) was determined. The parameters were 
then utilized to calculate the respective mass of iron (mFe) for each distribution with 𝑚ி௘ =  3𝑀ி௘3𝑀ி௘ + 4𝑀ை · 𝜌ி௘యைర · 𝑁௣ · 𝜋6 ·  𝑑଴ଷ exp (9𝜎ଶ2 ) (2)

using the molar mass of iron MFe = 55.845 g/mol and oxygen, M0 = 15.99 g/mol. 
Finally, the experimental determination of the iron mass within the sample using 

ICP-OES allowed for the selection of the appropriate distribution. 

3. Results 
3.1. Synthesis and Characterization of Magnetic Nanoparticles 

IONPs synthesized by the thermal decomposition method generally represent a 
highly crystalline core of Fe3O4, which includes a narrow amorphous surface boundary 
consisting of FexOy and a coating of oleic acid and oleylamine molecules, which renders 
the particles hydrophobic. Due to the fact that these IONPs start to nucleate within a very 
short time interval, the as-synthesized IONPs show a narrow size distribution. The ob-
tained seed IONPs showed two peaks in the DLS, one at the desired size of 10 nm and 
another peak at 250 nm, showing the presence of large precipitates (see Supplementary 
Materials). To remove these aggregates and reduce the size distribution, a size fractiona-
tion by the precipitation of the IONPs from hexane solution using ethanol was performed. 
After the precipitation and removal of the aggregates, the sample (called NJ15) showed a 
hydrodynamic radius of 12.1 nm with a PDI of 5.9%. The TEM images showed spherical 
IONPs arranged in densely packed two-dimensional arrays (Figure 2a). The average size 
of the IONPs determined by ImageJ [44] was 7.9 nm ± 0.7 nm (Figure 2b). These seed par-
ticles were grown and purified, and the resultant sample NJ19 was analyzed by DLS and 
TEM (Figure 2c). The hydrodynamic radius increased up to 21.6 nm, and the size deter-
mined by size evaluation of the TEM images was 10.6 nm ± 1.1 nm (Figure 2d), see Table 
2. Selected area electron diffraction allowed the inverse spinel structure to be indexed, 
indicating that the received particles consist of magnetite (inset of Figure 2c). Under the 
assumption that all the Fe(acac)3 in the reaction mixture were transformed quantitatively 
into Fe3O4 and added to the seed crystals, the diameter dIONP of the grown particles could 
be estimated by the formula given in Equation (3) [45]. 𝑑ூைே௉ଷ = 𝑑௦௘௘ௗଷ + 6 · 10ଶଵ · 𝑚ி௘𝜋 · 𝜌ி௘యைర · 𝑛௦௘௘ௗ (3)

Here, mFe is the mass of Fe in Fe(acac)3, ρFe3O4 denotes the density of Fe3O4 (5.2 g/cm3), 
and nseed is the number of seed particles employed in the reaction. 

With a diameter dseed of 7.9 nm, mFe of 112 mg, and nseed of 4.1 × 1016, we calculated a 
new diameter dIONP of 11.4 nm, which is in good accordance with the experimentally de-
rived result. 
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Figure 2. Sample of TEM images for the seed IONPs (a) NJ15 and (c) NJ19. The histogram and the 
distribution for respective particles are shown in (b) for NJ15 and (d) for NJ19. 

Table 2. Summary of characterization data of differently sized IONPs. 

Sample Hydrodynamic Size from DLS 
[nm] 

Size from TEM 
[nm] 

StDev from TEM 
[nm] 

NJ15 12.1 7.8 0.7 
NJ19 21.6 10.2 1.1 

3.2. Determination of the IONP’s Size by FMMD 
The samples NJ15 and NJ19 were prepared by diluting 40 µL of the stock solution 

into 100 µL of toluene. The nonlinear magnetic moment response signal in FMMD origi-
nates from the underlying relaxation mechanisms, i.e., Néel and Brownian relaxations. 
Hence, when aiming for core size analysis, the samples were initially dried out to suppress 
the Brownian relaxation contribution, yielding a response signal that was mainly Néel 
relaxation-dominated, which refers to the rotation of the magnetic moment in the crystal-
line core. 

The samples were measured using the EMOM setup introduced in Section 2.3. Figure 
3 depicts the nonlinear magnetic moment amplitude response of the first four mixing har-
monics (f1 + f2, f1 + 2⋅f2, f1 + 3⋅f2 and f1 + 4⋅f2) for the sample NJ15. Here, the magnetic response 
signal was mainly observed at the first two harmonics, and the measurement signals at f1 

+3·f2 and f1 +4·f2 fluctuated around the zero level. Moreover, the characteristic features of 
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the signals (i.e., minima, maxima, and zero crossings) were not seen since they were out 
of the scanning range of the static offset magnetic field. 

The measurement results of the NJ19 sample are presented in Figure 4. An adequate 
magnetic response is observed across all four harmonics, and the characteristic features of 
the FMMD signals are clearly visible. This allows us to proceed to the next step of the 
analysis, the core size analysis, by fitting the measurement signal and correlating it to the 
iron content present in the sample. The fitting of the measured signal with the assumption 
of lognormally distributed core sizes and respective magnetic moments was performed 
using an in-house LabVIEW program, as described in [26]. The lookup graph of the best-
fit parameters (σ and Np) for different d0 values yielding an R2 > 0.99 is depicted in Figure 
5. Here, the distribution width σ, the number of particles (Np), and the calculated iron 
mass values were plotted, respectively, in black, red, and blue solid squares. The iron mass 
(mFe) was calculated for every distribution according to Equation (2) and plotted for the 
respective distributions. The coinciding point with the iron mass experimentally deter-
mined by ICP-OES is denoted in the graph as a solid blue line, intersecting the y-axis as-
sociated with the iron mass. 

 
Figure 3. Measured nonlinear magnetic moment responses of the sample NJ15 in an immobilized 
state at mixing frequencies, f1 + f2 (top left), f1 + 2⋅f2 (top right), f1 + 3⋅f2 (bottom left), and f1 + 4⋅f2 
(bottom right), over the static magnetic offset field range from 0 mT to 25 mT. 
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Figure 4. Measured nonlinear magnetic moment responses of the sample NJ19 in an immobilized 
state at mixing frequencies, f1 + f2 (top left), f1 + 2⋅f2 (top right), f1 + 3⋅f2 (bottom left), and f1 + 4⋅f2 
(bottom right), over a static magnetic offset field range from 0 mT to 25 mT. The black-filled squares 
represent the measurement data of the sample, and the solid red line represents the fitting to the 
respective measurement data. 

 
Figure 5. Look-up graph of all the two-parameter fits performed for various d0′s compared to the 
measured data of sample NJ19 leading to R2 > 0.99. The σ values are depicted as black squares. The 
plot features σ values as black squares, particle count (NP) as red squares, and calculated iron mass 
(mFe) as blue squares. The iron mass obtained via ICP-OES is indicated by a blue line. To enhance 
visual clarity, lines connect corresponding points for each parameter set. 

The experimentally determined iron mass allows for the selection of the best-fitting 
distribution. In the case of NJ19, the analysis revealed that d0 = 10.74 nm, σ = 0.12, and Np 

= 2.6·1014. A comparative assessment of the FMMD results with TEM results corroborates 
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our findings, showcasing an excellent agreement in both the core diameter and the width 
of the particle size distribution. 

The experimental results clearly demonstrate that an increase in core sizes leads to a 
significant enhancement of the signal. Specifically, the comparison of the maxima of the f1 
+ 2·f2 signal indicates an approximately 8-fold increase in signal strength. Additionally, 
there was a noticeable improvement in the signal response from the larger batch of parti-
cles. Based on these findings, it is suggested that for monocore iron oxide particles to pro-
vide reliable signals in bio-sensing applications, a lower size limit of at least 10 nm should 
be maintained. Reducing the core size below this threshold may result in suboptimal sig-
nal performance. 

4. Conclusions 
We reported on the response of two differently sized IONP samples in FMMD meas-

urements. We found that the IONP sample with a diameter of 7.8 nm ± 0.7 nm (NJ15) 
exhibited a significantly diminished magnetic response. On the contrary, the sample with 
a size of 10.2 nm ± 1.1 nm (NJ19), characterized by a larger diameter, generated a magnetic 
signal sufficient for the FMMD analysis. Notably, the disparity in diameters between these 
two samples was a mere 2.4 nm. This understanding underscores the sensitivity of the 
magnetic response to particle size variation within IONPs, affirming the critical role of 
precise size characterization in magnetic nanoparticle research. The alignment of our find-
ings by FMMD with TEM analyses validates our experimental approach. Additionally, 
the FMMD can be incorporated into the synthesis procedures for the evaluation of MNP 
production in different stages of synthesis. Looking forward, we propose that this tech-
nique be used for the inline monitoring of MNP production due to its ease of integration. 

Supplementary Materials: The following supporting information can be downloaded 
at:https://www.mdpi.com/article/10.3390/s24134223/s1, Figure S1: Plot showing the intensity 
weighted DLS spectra for the samples NH15 and NH19. 
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